新冠疫情之下,“测核酸”已成为全民热词,PCR作为测核酸的官宣仪器也火爆热卖,这里指的是荧光定量PCR(qPCR)。
大家知道,有时的“漏检”是因为病毒的copy数太低;而若想减少甚至消除“漏检”,可用另一种更灵敏更精准的数字PCR(digital PCR,dPCR)技术。
dPCR和qPCR到底有何区别?
为什么说dPCR的效果更好?
它能解决哪些问题?
国内外有哪些dPCR的玩家?
本文将揭秘dPCR的前世今生,并对市场上dPCR的代表性产品逐一展示,希望能为您下次入囊前做点儿准备。
PCR定量发展简史
PCR即聚合酶链式反应(Polymerase Chain Reaction),它以DNA双链复制原理为基础,对特定核酸样本进行体外扩增,能够将微量的核酸样本迅速拷贝至几百万倍。
自1985年美国科学家Kary Mullis发明PCR以来的三十多年,PCR经历了三代技术的发展。
di一代与第二代
di一代传统PCR技术,采用琼脂糖凝胶电泳的方法对PCR产物进行定性分析;第二代荧光定量PCR(qPCR)技术,通过在PCR反应体系中加入荧光基团,利用荧光信号的积累实时监控PCR进程,zui后用进入扩增指数期时的Cq值(罗氏)或Ct值(AB/赛默飞)对基因进行定量分析。
为何di一代PCR只能定性?
这是因为PCR反应事实上呈现S型,在反应终点区测定终点产物的数量误差很大,因此只能定性。第二代qPCR利用拐点产物数量定量,重现性好,当结合标准曲线后,可以实现绝对定量。这同分析化学上讲的定量方法并无区别,实现定量,需要找到标准样品,需要做标准曲线。
第三代
下面我们重点说说神奇的第三代数字PCR(dPCR)技术。
这种定量技术,既不需要标准品,也不需要做标准曲线,即可实现对起始样本的绝对定量,灵敏度和准确度还特别高。纵观当今分析技术,唯有dPCR可以实现不需标准曲线的绝对定量,足可笑傲定量江湖,用降维打击、一举封神、YYDS等各种赞誉来形容它都挺合适。
dPCR的基本原理是:通过将PCR反应液进行有限稀释,实现核酸分子的单分子扩增,zui终采取终点法检测阳性微滴的荧光信号,有荧光信号的微滴判读为 1;没有荧光信号的微滴判读为 0,因此该技术被称为数字PCR。
简而言之,就是把复杂的定量工作简化成“1”和“0”,没有寻找标准品的困扰,没有做标准曲线的烦恼,把所有人为误差统统丢掉,这就是dPCR被誉为PCR技术之未来的底气。
dPCR的诞生
1992年,Sykes等在检测复杂背景下低丰度的IgH重链突变基因时,利用样品的有限稀释,让每个微孔只获得单个模板分子,通过计算PCR后的扩增信号,以期准确确定原始分子的数量。虽然没有明确提出“数字PCR”的概念,但是已经建立了数字PCR基本的实验流程,并且确定了数字PCR检测中一个极其重要的原则——以“终点信号的有或无”作为定量方法,这是数字PCR的雏形。
1999年,霍普金斯大学的Bert Vogelstein和他的同事Kenneth Kinzler等在分析癌症突变的罕见基因型过程时,因受到体细胞基因的干扰,而遇到检测灵敏度和检测分辨率的瓶颈,采用了在384孔板中对每个反应孔的样品量进行极限稀释并增加反应孔数进行检测的方式,从而明确提出了数字式PCR(dPCR)的概念,同时也提出如果采用更多孔板其检测灵敏度会更高,从而指出了dPCR系统的发展方向。
dPCR是PCR技术上里程碑式的飞跃,其概念被提出后,受限于当时的技术条件,如样本稀释及分配都是靠手工来完成的,干扰和限制因素较多;并且结果分析对于研究者来说也十分枯燥与繁琐,因此在很长一段时间dPCR发展停滞不前。
后来由于微流控技术与微纳集成制造工艺的发展解决了dPCR应用过程中的几个关键技术问题,推动了dPCR的研究与商业化的发展。
细说dPCR原理
数字PCR的基本原理是:将稀释的核酸样品分配到大量独立的微反应单元,进行大规模单拷贝PCR扩增反应和基于泊松分布(Poisson distribution)的绝对定量分析。
与RT-qPCR不同,dPCR不需要使用标准曲线,即可实现目的核酸拷贝数的绝对定量。dPCR平台是基因和细胞治疗的标配,在载体开发中可以用作质量控制检测。
目前根据dPCR样本稀释分配的方式,基本可分为三大类:一种是基于大规模集成的微流控芯片;第二种是使用微反应室/孔板;第三种是基于液滴式。
其中后者是近年来dPCR分析仪的主流。液滴数字PCR(ddPCR)是一种基于水油乳液液滴技术的dPCR方法,其将样品分馏成20,000个液滴,并在每个液滴中发生模板分子的PCR扩增。ddPCR 技术使用的试剂和工作流程与大多数基于TaqMan探针的标准检测有着相似的试剂和工作流程。大规模样本分区是dPCR 技术的一个关键方面,不论是芯片式还是液滴式,其基本原理都是将大量稀释后的核酸溶液分散至芯片的微反应器或者液滴当中,每个反应器的核酸模板数少于1或者等于1。经过PCR扩增之后,有一个核酸分子模板的反应器就会给出荧光信号,没有模板的反应器没有荧光信号。根据相对比例和反应器的体积,可以推算出原始溶液的核酸浓度。
dPCR的主要技术特点
dPCR具有灵敏度高(可达0.001-0.0001%),特异性强,可检测复杂背景下的靶标序列;可高度耐受PCR反应抑制剂,如SDS(十二烷基磺酸钠)、EDTA(乙二胺四乙酸)、Heparin(肝素,血液抗凝剂)等;不必依赖对照品或标准品,可对目标拷贝数直接进行精确定量,分析微小的浓度差异;实验数据分析便捷,每个微滴的检测结果以阴性、阳性判读,数据分析自动化;可统计突变率,通过统计分析可得出靶点的突变率。
作为近年来兴起的分子诊断分析技术,dPCR在应用技术上还存在需要改进的地方,如通量较低,一般单个反应2重反应效果zui佳;dPCR优点是灵敏度高,但是对于DNA浓度大的样本来说优势就不能体现,而且核酸浓度高时,每个微滴里面包含的拷贝数不符合泊松分布;dPCR虽然不依赖标准曲线,但是每次反应之间存在差异,短期内不能完全取代qPCR,也不能代替其他金标准方法。
dPCR仪在细分领域的应用前景
dPCR技术的出现不是为了完全取代原有分子诊断技术,而是更好的补充和完善现有技术平台。dPCR为不同应用场景下的多样化核酸检测需求提供了新的思路,尤其是在医学检验方面,在感染性疾病早期检测、癌症的液体活检、无创产前检查等领域展现出良好的应用前景。
dPCR的优势与临床应用前景已在许多研究中得到确认,但zui终实现在临床上的广泛应用,需要以下几个方面进行升级:商用dPCR系统需要进一步提升样本检测通量以充分满足病毒筛查的需求;需要制定国家或行业统一标准。目前新羿生物已经推动了dPCR的地方标准(DB 32/T3762.16-2001 新型冠状病毒检测技术规范第16法:核酸数字PCR),用于新冠病毒检测;需要产业界进一步降低设备成本;基于dPCR的新冠检测试剂盒需要经过严格评价,并获得NMPA、FDA、CE等监管机构的认证才可投放国内或海外市场。
实现感染性疾病早期高效检测
——以新冠病毒为例
(1)病毒检测。qPCR检测技术是目前新冠病毒检测的“金标准”,但由于病毒探针结合位点突变、样本病毒载量不足等原因,在临床检测过程中经常出现假阴性结果,由于dPCR具有更高的灵敏度、精准度,以及其适合痕量样本检测的特性,能够纠正RT-qPCR检测出的“假阴性”结果,作为后者的补充方法。
(2)临床样本病毒载量评估。在人群筛查及临床诊疗中,为科学选取采样方式,需要评估不同临床样本病毒载量,如鼻咽拭子、血尿、粪便、肺泡灌洗液等,由于dPCR可提供绝对量化指标,为采样方法的选取提供了参考,从而提高检出率。
(3)监测环境病毒载量。在外防输入的战略要求下,环境病毒检测尤为重要。dPCR可对低核酸丰度样本进行有效检测,包括从不同环境中取样的样本,如病房、卫生间、实验室等等,在疫情防控中起到了不可忽视的作用。此外,dPCR的应用场景还有病程不同阶段的病毒载量评估、核酸参考品制备、抗病毒药物研发等环节。
©
金山科研平台 thermo nunc brand millipore eppendorf pall sigma-abcam corning axygen gibco hyclone lonza takara一级代理是专业的授权总代理区域代理经销平台。
© 如需询价,请加客服QQ:1749072012 、客服微信:jinshanbio,或发送邮件到1749072012@qq.com
© 平台为生命科学研究相关领域提供一站式耗材试剂仪器解决方案和采购服务,数据资源基于CC协议。
© 本文地址:
https://jinshanbio.cn/thread-1850.htm